4.7 Article

High-resolution mapping of injury-site dependent functional recovery in a single axon in zebrafish

Journal

COMMUNICATIONS BIOLOGY
Volume 3, Issue 1, Pages -

Publisher

NATURE PUBLISHING GROUP
DOI: 10.1038/s42003-020-1034-x

Keywords

-

Funding

  1. Koselleck award of the Deutsche Forschungsgemeinschaft [Schu1470/8]

Ask authors/readers for more resources

In non-mammalian vertebrates, some neurons can regenerate after spinal cord injury. One of these, the giant Mauthner (M-) neuron shows a uniquely direct link to a robust survival-critical escape behavior but appears to regenerate poorly. Here we use two-photon microscopy in parallel with behavioral assays in zebrafish to show that the M-axon can regenerate very rapidly and that the recovery of functionality lags by just days. However, we also find that the site of the injury is critical: While regeneration is poor both close and far from the soma, rapid regeneration and recovery of function occurs for injuries between 10% and 50% of total axon length. Our findings show that rapid regeneration and the recovery of function can be studied at remarkable temporal resolution after targeted injury of one single M-axon and that the decision between poor and rapid regeneration can be studied in this one axon. Alexander Hecker et al. study the regeneration potential of the axon of the giant Mauthner (M) neuron in zebrafish. Using two-photon microscopy and behavioral assays, they show that the M-axon can recover rapidly days after injury. They also characterize the optimal injury site that enables rapid regeneration and functional recovery.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available