4.7 Article

Sn Substitution by Ge: Strategies to Overcome the Open-Circuit Voltage Deficit of Kesterite Solar Cells

Journal

ACS APPLIED ENERGY MATERIALS
Volume 3, Issue 6, Pages 5830-5839

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/acsaem.0c00763

Keywords

kesterite; CZGSe; V-OC germanium; high voltage

Funding

  1. European Union [640868]

Ask authors/readers for more resources

Current state-of-the-art Cu2ZnSn(S,Se)(4) kesterite solar cells are limited by low open-circuit voltages (V-OC). In order to evaluate to what extent the substitution of Sn by Ge is able to result in higher V oc values, this article focuses on Cu2ZnGeSe4 CZGSe devices. To reveal their full potential, different strategies are explored that, in particular, aim at the optimization of the CZGSe/buffer heterojunction. Here, employing hard X-ray photoelectron spectroscopy, it is evidenced that only a combination of different surface treatments is able to remove all detrimental secondary phases. Further improvements are achieved by establishing a solar cell heat treatment in air. A systematic study of the impact of different annealing temperatures and durations determines the best heat treatment parameters to be 60 min at 200 degrees C. Also, Zn(O,S,OH) as a more transparent alternative to the heavy-metal compound CdS buffer layer has been realized. Combining all of the strategies, solar cells with 8.5 and 7.5% total area efficiency have been prepared, which is a record for Sn-free kesterite solar cells and any kesterite solar cell with a Zn(O,S,OH) buffer, respectively. Beyond these records, this work clearly confirms the emerging trend that Ge-for-Sn substitution is a successful strategy to improve the V-OC of kesterite solar cells.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available