4.7 Article

In situ forming microporous gelatin methacryloyl hydrogel scaffolds from thermostable microgels for tissue engineering

Journal

Publisher

WILEY
DOI: 10.1002/btm2.10180

Keywords

GelMA microgels; in situ forming microporous hydrogels; MAP gels; microfluidics; microporous hydrogels; thermostable GelMA microbeads; tissue engineering

Funding

  1. Sapienza, University of Rome
  2. Canadian Institutes of Health Research
  3. Presidential Early Career Award for Scientists and Engineers [N00014-16-1-2997]
  4. Pennsylvania State University
  5. University of Fortaleza's (UNIFOR) Global Research Fellowship Program
  6. National Institutes of Health [GM126831, AR073822]

Ask authors/readers for more resources

Converting biopolymers to extracellular matrix (ECM)-mimetic hydrogel-based scaffolds has provided invaluable opportunities to design in vitro models of tissues/diseases and develop regenerative therapies for damaged tissues. Among biopolymers, gelatin and its crosslinkable derivatives, such as gelatin methacryloyl (GelMA), have gained significant importance for biomedical applications due to their ECM-mimetic properties. Recently, we have developed the first class of in situ forming GelMA microporous hydrogels based on the chemical annealing of physically crosslinked GelMA microscale beads (microgels), which addressed several key shortcomings of bulk (nanoporous) GelMA scaffolds, including lack of interconnected micron-sized pores to support on-demand three-dimensional-cell seeding and cell-cell interactions. Here, we address one of the limitations of in situ forming microporous GelMA hydrogels, that is, the thermal instability (melting) of their physically crosslinked building blocks at physiological temperature, resulting in compromised microporosity. To overcome this challenge, we developed a two-step fabrication strategy in which thermostable GelMA microbeads were produced via semi-photocrosslinking, followed by photo-annealing to form stable microporous scaffolds. We show that the semi-photocrosslinking step (exposure time up to 90 s at an intensity of similar to 100 mW/cm(2)and a wavelength of similar to 365 nm) increases the thermostability of GelMA microgels while decreasing their scaffold forming (annealing) capability. Hinging on the tradeoff between microgel and scaffold stabilities, we identify the optimal crosslinking condition (exposure time similar to 60 s) that enables the formation of stable annealed microgel scaffolds. This work is a step forward in engineering in situ forming microporous hydrogels made up from thermostable GelMA microgels for in vitro and in vivo applications at physiological temperature well above the gelatin melting point.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available