4.8 Article

Development of K4Fe3(PO4)2(P2O7) as a novel Fe-based cathode with high energy densities and excellent cyclability in rechargeable potassium batteries

Journal

ENERGY STORAGE MATERIALS
Volume 28, Issue -, Pages 47-54

Publisher

ELSEVIER
DOI: 10.1016/j.ensm.2020.02.031

Keywords

Polyanion; Cathode; First-principles calculation; Potassium; Battery

Funding

  1. Radiation Technology R&D program of the National Research Foundation of Korea - Ministry of Science and ICT of Korea [NRF-2017M2A2A6A01070834, NRF-2019M2A2A6A05102365]
  2. International Research & Development Program of the National Research Foundation of Korea - Ministry of Science and ICT of Korea [NRF-2018K2A9A2A12000230]
  3. General Research Program of the National Research Foundation of Korea - Ministry of Science and ICT of Korea [NRF2019R1F1A1063415]

Ask authors/readers for more resources

We introduce K4Fe3(PO4)(2)(P2O7) as a novel cathode material with superior electrochemical performance for K-ion batteries. First-principles calculation is used to predict the theoretical properties and detailed K+ storage mechanism of K4Fe3(PO4)(2)(P2O7), which are consistent with experimental results. K4Fe3(PO4)(2)(P2O7) exhibits a large specific discharge capacity of similar to 118 mAh g(-1), approaching the theoretical capacity, at C/20 (1C = 120 mA g(-1)) in the voltage range of 2.1-4.1V (vs. K+/K), allowing similar to 3 mol of K+ de/intercalation per formula unit with a small volume change of similar to 4% during charge/discharge. Even at 5C, up to similar to 70% of its theoretical specific capacity is retained, and this outstanding power-capability is related to the low activation barrier energy for K+ diffusion, as verified through first-principles calculations. Furthermore, K4Fe3(PO4)(2)(P2O7) exhibits excellent cyclability with retention of similar to 82% of the initial capacity after 500 cycles at 5C. The above theoretical and experimental results suggest the feasibility of using K4Fe3(PO4)(2)(P2O7) as a cathode material for rechargeable potassium batteries.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available