4.6 Article

Direct CO2 Capture from Air via Crystallization with a Trichelating Iminoguanidine Ligand

Journal

ACS OMEGA
Volume 5, Issue 32, Pages 20428-20437

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/acsomega.0c02460

Keywords

-

Funding

  1. National Natural Science Foundation of China [21876124, U1732112]
  2. Fundamental Research Funds for the Central Universities [2020QNA4035]

Ask authors/readers for more resources

Effectively reducing the concentration of CO2 in ambient air is essential to mitigate global warming. Existing carbon capture and storage technology can only slow down the carbon emissions of large point sources but cannot treat the already accumulated CO2 in the environment. Herein, we demonstrated a simple direct CO2 capture method from air via reactive crystallization with a new trichelating iminoguanidine ligand (BTIG). It could strongly bind CO2 to form insoluble carbonate crystals that could be easily isolated. In the crystal, CO2 was transformed to CO32- and trapped in a dense hydrogen bonding network in terms of carbonate-water clusters. This capture process was reversible, and the BTIG ligand could be regenerated by heating the BTIG-CO2 crystal at a mild temperature, which was much lower than the decomposition temperature of CaCO3 (similar to 900 degrees C). Thermodynamic and kinetics analyses indicate that the crystallization process was exothermic with an enthalpy of -292 kJ/mol, and the decomposition energy consumption was 169 kJ per mol CO2. In addition, BTIG could also be employed for CO2 capture from flue gas with a capacity of 1.46 mol/mol, which was superior to that of most of the reported sorbents.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available