4.6 Article

Effect of 1,3-Propane Sultone on the Formation of Solid Electrolyte Interphase at Li-Ion Battery Anode Surface: A First-Principles Study

Journal

ACS OMEGA
Volume 5, Issue 23, Pages 13541-13547

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/acsomega.9b04447

Keywords

-

Funding

  1. Hierarchical Green-Energy Materials (Hi-GEM) Research Center
  2. Featured Areas Research Center Program within the framework of the Higher Education Sprout Project by the Ministry of Education (MOE)
  3. Ministry of Science and Technology in Taiwan [MOST 109-2634-F-006-020]

Ask authors/readers for more resources

Density functional theory is applied to investigate the reductive reactions of reductive-type additive, 1,3-propane sultone (PS), on the formation of solid electrolyte interphase (SEI) near the lithium-ion battery anode surface. Different from the studies that mostly focus on the reduction dissociation of a specific molecule, we adopt an iterative method that systematically considered most possible reactants from the environment in every round of the reaction. The thermodynamically favorable reaction in each round was chosen. Its products then proceed to the following step. At least four iterations of reactions were calculated. A The favorable products in each round were then analyzed to understand the trend of the series reactions. With the iterative method, the compounds in every reaction round can be inspected in detail. The method not only predicted the compounds that are consistent with those observed in the experiments but also provide insights into how PS forms an effective SEI. In the solvent state, the most stable reduction states of PS and electrolyte ethylene carbonate (EC) are confirmed as the initial reactants further interact with the environment supplies. First, with the addition of PS, the reduction of PS is prior to EC, which would suppress the reduction of EC and decrease the generation of ethene gas. Second, the compounds from the initial reaction round of PS are lithiated ones and show higher reduction ability than that of EC, while the latter show lower reduction ability than that of the EC, which terminated the reactions. This would be the critical properties for reductive-type additive to form an effective SEI film.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available