4.6 Article

Transmission Strategy for Simultaneous Wireless Information and Power Transfer with a Non-Linear Rectifier Model

Journal

ELECTRONICS
Volume 9, Issue 7, Pages -

Publisher

MDPI
DOI: 10.3390/electronics9071082

Keywords

simultaneous wireless information and power transfer; non-linear rectifier; multi-tone signal; transmission strategy

Funding

  1. FWO-Flanders (Fonds voor Wetenschappelijk Onderzoek-Vlaanderen)
  2. Hercules

Ask authors/readers for more resources

Most studies determining data rate or power conversion efficiency (PCE) of simultaneous wireless information and power transfer (SWIPT) focus on ideal models for the non-linear energy harvester, or focus on simplified waveforms that carry no information. In this paper, we study SWIPT using realistic waveforms and a measurement-based energy harvesting model. For a special class of multisine waveforms carrying only information in the phase, we analyze PCE as a function of waveform design, including the impact of pre-equalization to mitigate wireless channel distortion. A balanced pre-equalizer that trades off between the peak-to-average power ratio (PAPR) and signal to noise ratio, maximizing the total PCE is proposed. The impact on the information rate of the analyzed waveforms is also presented. The results show that balanced pre-equalizers can improve the total PCE more than three times within 5% rate loss compared to the pre-equalizer that solely maximizes the signal PAPR or the capacity using the same transmit power. We also show that the maximum normalized PCE is increased by a factor of two by only allowing phase modulation to ensure the PAPR of one symbol, compared to traditional modulation schemes that carry information in both phase and amplitude to maximize spectral efficiency.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available