4.7 Article

Vibrational resonance and implementation of dynamic logic gate in a piecewise-linear Murali-Lakshmanan-Chua circuit

Journal

Publisher

ELSEVIER
DOI: 10.1016/j.cnsns.2016.03.009

Keywords

Vibrational resonance; Piecewise-linear systems; Dynamic computing; Logic gates

Ask authors/readers for more resources

We report the occurrence of vibrational resonance in piecewise-linear non-autonomous system. Especially, we show that an optimal amplitude of the high frequency second harmonic driving enhances the response of a piece-wise linear non-autonomous Murali-Lakshmanan-Chua (MLC) system to a low frequency first harmonic signal. This phenomenon is illustrated with the analytical solutions of circuit equations characterising the system and finally compared with the numerical method. Further, it has been enunciated explicitly, the implementation of the fundamental NOR/NAND gate via vibrational resonance, both by numerical and analytical solutions. In addition, these logical behaviours (AND/NAND/OR/NOR) can be decided by the amplitude of the input square waves without altering the system parameters. (C) 2016 Elsevier B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available