4.6 Article

Eupatilin Promotes Cell Death by Calcium Influx through ER-Mitochondria Axis with SERPINB11 Inhibition in Epithelial Ovarian Cancer

Journal

CANCERS
Volume 12, Issue 6, Pages -

Publisher

MDPI
DOI: 10.3390/cancers12061459

Keywords

SERPINB11; ovarian cancer; eupatilin; calcium influx; ER-mitochondria axis

Categories

Funding

  1. National Research Foundation of Korea - Ministry of Science and ICT, South Korea [2018R1C1B6009048]

Ask authors/readers for more resources

Ovarian cancer is the leading cause of gynecological cancer-related mortality. The anticancer effect of eupatilin, a family of flavonoids, is known in many cancer types, but it is unclear what mechanism it plays in ovarian cancer. In this study, eupatilin promoted cell death of ovarian cancer cells by activating caspases, cell cycle arrest, reactive oxygen species (ROS) generation, calcium influx, disruption of the endoplasmic reticulum (ER)-mitochondria axis with SERPINB11 inhibition, and downregulation of phosphoinositide 3-kinase (PI3K) and mitogen activated protein kinase (MAPK) pathways. Additionally, eupatilin-reduced SERPINB11 expression enhanced the effect of conventional chemotherapeutic agents against ovarian cancer cell progression. Cotreatment with siSERPINB11 and eupatilin increased calcium-ion-dependent apoptotic activity in ovarian cancer cells. Although there were no significant toxic effects of eupatilin on embryos, eupatilin completely inhibited tumorigenesis in a zebrafish xenograft model. In addition, eupatilin suppressed angiogenesis in zebrafish transgenic models. Collectively, downregulating SERPINB11 with eupatilin against cancer progression may improve therapeutic activity.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available