4.4 Article

Frozen patterns of impacted droplets: From conical tips to toroidal shapes

Journal

PHYSICAL REVIEW FLUIDS
Volume 5, Issue 8, Pages -

Publisher

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevFluids.5.081601

Keywords

-

Funding

  1. Fudan University
  2. National Natural Science Foundation of China [11704077]
  3. China Postdoctoral Science Foundation [2018T110342]
  4. DOE-PNNL [428977]

Ask authors/readers for more resources

We report frozen ice patterns for the water droplets impacting on a cold substrate through high-speed images. These patterns can be manipulated by several physical parameters (the droplet size, falling height, and substrate temperature), and the scaling analysis has a remarkable agreement with the phase diagram. The observed double-concentric toroidal shape is attributed to the correlation between the impacting dynamics and freezing process, as confirmed by the spatiotemporal evolution of the droplet temperature, the identified timescale associated with the morphology and solidification (t(inn) similar or equal to tau(sol)), and the ice front-advection model. These results for frozen patterns provide insight into the complex interplay of the rapid impacting hydrodynamics, the transient heat transfer, and the intricate solidification process.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available