4.4 Article

First Report for Levodopa Electrocatalytic Oxidation Based on Copper Metal-Organic Framework (MOF): Application in a Voltammetric Sensor Development for Levodopa in Real Samples

Journal

CHEMISTRYSELECT
Volume 5, Issue 28, Pages 8532-8539

Publisher

WILEY-V C H VERLAG GMBH
DOI: 10.1002/slct.202001781

Keywords

Electrocatalytical oxidation; Levodopa; Metal-organic framework; Voltammetry Sensor

Funding

  1. Bu-Ali Sina University from the Grant Research Council

Ask authors/readers for more resources

Levodopa (LD) determination was achieved for the first time by a cooper metal-organic framework (MOF) based nanocomposite modified electrode. This research describes a simple, sensitive and cost-effective electrochemical method for the detection of LD in real samples and the laboratory samples. This method is based on LD oxidation on glassy carbon electrode (GCE) surface modified with multi-walled carbon nanotubes and copper terephthalic acid MOF (MWCNTs/Cu (TPA) MOF) nanocomposite. MOF was synthesized by the hydrothermal method. The synthesized MOF was characterized by Fourier-transform infrared spectrophotometry (FT-IR), energy-dispersive X-ray spectroscopy (EDX), field emission scanning electron microscopy (FESEM) and X-ray diffraction (XRD). Electrochemical studies were accomplished by square wave voltammetry (SWV) and cyclic voltammetry (CV). The applied MOF, as a Cu-containing synthetic peroxidase enzyme, can electrocatalyze oxidation of LD on the electrode surface and in incorporation with MWCNTs illustrated satisfactory synergic electrocatalytical properties which leads to sensitive detection of LD in the human serum sample. Limit of detection (LOD), sensitivity and linear range were 2 nmol L-1, 2.26 mu A/mu mol L(-1)and 0.9-35 mu mol L(-1)respectively, which in compared to other enzymatic or non-enzymatic sensors were completely satisfying. Ultimately, stability, repeatability and reproducibility of as-prepared sensor were investigated and the results were acceptable.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available