4.6 Article

Ultrastable All-Solid-State Sodium Rechargeable Batteries

Journal

ACS ENERGY LETTERS
Volume 5, Issue 9, Pages 2835-2841

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/acsenergylett.0c01432

Keywords

-

Funding

  1. National Key R&D Program of China [2016YFB0901500]
  2. National Natural Science Foundation of China [51872303, U1964205, 11874254]
  3. Zhejiang Provincial Natural Science Foundation of China [LD18E020004, LY18E020018]
  4. Youth Innovation Promotion Association CAS [2017342]

Ask authors/readers for more resources

The insufficient ionic conductivity of oxide-based solid electrolytes and the large interfacial resistance between the cathode material and the solid electrolyte severely limit the performance of room-temperature all-solid-state sodium rechargeable batteries. A NASICON solid electrolyte Na3.4Zr1.9Zn0.1Si2.2P0.8O12, with superior room-temperature conductivity of 5.27 x 10(-3) S cm(-1), is achieved by simultaneous substitution of Zr4+ by aliovalent Zn2+ and P5+ by Si4+ in Na3Zr2Si2PO12. The bulk conductivity and grain boundary conductivity of Na3.4Zr1.9Zn0.1Si2.2P0.8O12 are nearly 20 times and almost 50 times greater than those of pristine Na3Zr2Si2PO12, respectively. The FeS2 parallel to polydopamine-Na(3.4)Zr(1.9)Zn(0.1)Si(2.2)P(0.8)0O(12)parallel to Na all-solid-state sodium batteries, with a polydopamine modification thin layer between the solid electrolyte and the cathode, maintain a high reversible capacity of 236.5 mAh g(-1) at a 0.1 C rate for 100 cycles and a capacity of 133.1 mAh g(-1) at 0.5 C for 300 cycles, demonstrating high performance for all-solid- state sodium batteries.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available