4.6 Article

Fluorescence-Enabled Self-Reporting for Redox Flow Batteries

Journal

ACS ENERGY LETTERS
Volume 5, Issue 9, Pages 3062-3068

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/acsenergylett.0c01447

Keywords

-

Funding

  1. Joint Center for Energy Storage Research (JCESR), an Energy Innovation Hub - U.S. Department of Energy, Office of Science, Basic Energy Sciences
  2. U.S. Department of Energy Office of Science laboratory [DE-AC02-06CH11357]
  3. U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences [DE-AC02-06CH11357]

Ask authors/readers for more resources

Monitoring battery health is challenging. Self-reporting enables the rapid health assessment of redox flow batteries (RFBs) and provides insight into degradation mechanisms of electrochemically active molecules (redoxmers). Here we introduce fluorescence as an orthogonal property to probe this chemistry in situ. An established anolyte redoxmer, 2,1,3-benzothiadiazole, is rendered an efficient blue-green fluorophore through minimalistic derivatization. One of the derivatives is electrochemically reversible with a long lifetime and cycling stability in the charged state. Spectroscopic measurements on this new redoxmer reveal strong effects of the electrolyte cation on the fluorescence that are useful for probing the solvent microenvironment. Using this probe, we demonstrate proof-of-concept in situ crossover sensing and characterize the effects of electrolyte composition on this crossover. In this way, real-time tracing of redoxmers in a flow cell is demonstrated, paving the way to include still more self-reporting functions into the redoxmers.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available