4.6 Article

Synthesis of High-Performance Photonic Crystal Film for SERS Applications via Drop-Coating Method

Journal

COATINGS
Volume 10, Issue 7, Pages -

Publisher

MDPI
DOI: 10.3390/coatings10070679

Keywords

drop-coating; colloidal crystal; SERS substrate; photonic crystal; structural color

Funding

  1. Ministry of Science and Technology, Taiwan

Ask authors/readers for more resources

Silica nanospheres with a well-controlled particle size were prepared via a nucleation-to-growth synthesis process. A facile method is proposed for improving the self-assembly behavior of silica colloidal particles in droplet coatings by the simple controlling of the drying temperature. It is shown that a periodically arranged, opal-structured, photonic crystal film with a large area of approximately 4.0 cm(2)can be prepared, even when the particle size is up to 840 nm. When the band gap of the silica photonic crystals falls in the visible-light region, the crystals exhibit distinct structural colors. Moreover, the wavelength of the reflected light increases with an increasing particle size of silica. When the photonic band gap overlaps the wavelength of the laser source, the overall Raman spectrum intensity is significantly enhanced. Accordingly, the proposed nucleation-to-growth process and drop-coating method provides a cheap and simple approach for the manufacture of uniform sized silica and surface-enhanced Raman scattering substrates, respectively.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available