4.7 Article

Microstructure and mechanical properties of wire arc additively manufactured Hastelloy C276 alloy

Journal

MATERIALS & DESIGN
Volume 195, Issue -, Pages -

Publisher

ELSEVIER SCI LTD
DOI: 10.1016/j.matdes.2020.109007

Keywords

Wire Arc Additive Manufacturing (WAAM); Hastelloy C276; Microstructure; Material properties; Anisotropy

Ask authors/readers for more resources

In this study, a Hastelloy C276 thin-wall structure was fabricated by wire arc additive manufacturing (WAAM). The microstructure and mechanical properties of the as-deposited structure were evaluated in detail using specimens extracted from different orientations and locations along the deposition direction. The results show that the primary dendrite arm spacing, dislocation density, and second-phase precipitates change along the deposition direction of the material, and they are responsible for the occurrence of anisotropy and heterogeneity in the observed mechanical properties. However, the well-distributed hardness values generated in the as deposited sample are considered to be due to the uniform directional dendrites. This study enables a better understanding of the WAAM processing-microstructure-properties relationship for the nickel-based alloy, providing useful information for process optimization and improvement in the resultant mechanical properties. (c) 2020 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license (http:// creativecommons.org/licenses/by-nc-nd/4.0/).

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available