4.7 Article

Adaptive characterization of spatially inhomogeneous fields and errors in qubit registers

Journal

NPJ QUANTUM INFORMATION
Volume 6, Issue 1, Pages -

Publisher

NATURE PUBLISHING GROUP
DOI: 10.1038/s41534-020-0286-0

Keywords

-

Funding

  1. ARC Centre of Excellence for Engineered Quantum Systems [CE170100009]
  2. US Army Research Office [W911NF-12-R-0012]

Ask authors/readers for more resources

New quantum computing architectures consider integrating qubits as sensors to provide actionable information useful for calibration or decoherence mitigation on neighboring data qubits, but little work has addressed how such schemes may be efficiently implemented in order to maximize information utilization. Techniques from classical estimation and dynamic control, suitably adapted to the strictures of quantum measurement, provide an opportunity to extract augmented hardware performance through automation of low-level characterization and control. In this work, we present an adaptive learning framework, Noise Mapping for Quantum Architectures (NMQA), for scheduling of sensor-qubit measurements and efficient spatial noise mapping (prior to actuation) across device architectures. Via a two-layer particle filter, NMQA receives binary measurements and determines regions within the architecture that share common noise processes; an adaptive controller then schedules future measurements to reduce map uncertainty. Numerical analysis and experiments on an array of trapped ytterbium ions demonstrate that NMQA outperforms brute-force mapping by up to 20x (3x) in simulations (experiments), calculated as a reduction in the number of measurements required to map a spatially inhomogeneous magnetic field with a target error metric. As an early adaptation of robotic control to quantum devices, this work opens up exciting new avenues in quantum computer science.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available