4.7 Article

Toward a Common Framework and Database of Materials for Soft Robotics

Journal

SOFT ROBOTICS
Volume 8, Issue 3, Pages 284-297

Publisher

MARY ANN LIEBERT, INC
DOI: 10.1089/soro.2019.0115

Keywords

hyperelasticity; constitutive model; soft robotics materials; tensile tests

Categories

Funding

  1. Cancer Research UK (CRUK) [C63674/A26161]

Ask authors/readers for more resources

The study highlights the importance of a unified database of material constitutive models for soft robotics, providing experimental characterizations and mechanical properties for seventeen elastomers. This database aids in designing and modeling soft robots, as well as serving as a foundation for future material characterizations in the field of soft robotics research.
To advance the field of soft robotics, a unified database of material constitutive models and experimental characterizations is of paramount importance. This will facilitate the use of finite element analysis to simulate their behavior and optimize the design of soft-bodied robots. Samples from seventeen elastomers, namely Body Double (TM) SILK, Dragon Skin (TM) 10 MEDIUM, Dragon Skin 20, Dragon Skin 30, Dragon Skin FX-Pro, Dragon Skin FX-Pro + Slacker, Ecoflex (TM) 00-10, Ecoflex 00-30, Ecoflex 00-50, Rebound (TM) 25, Mold Star (TM) 16 FAST, Mold Star 20T, SORTA-Clear (TM) 40, RTV615, PlatSil(R)Gel-10, Psycho Paint(R), and SOLOPLAST 150318, were subjected to uniaxial tensile tests according to the ASTM D412 standard. Sample preparation and tensile test parameters are described in detail. The tensile test data are used to derive parameters for hyperelastic material models using nonlinear least-squares methods, which are provided to the reader. This article presents the mechanical characterization and the resulting material properties for a wide set of commercially available hyperelastic materials, many of which are recognized and commonly applied in the field of soft robotics, together with some that have never been characterized. The experimental raw data and the algorithms used to determine material parameters are shared on theSoft Robotics Materials DatabaseGitHub repository to enable accessibility, as well as future contributions from the soft robotics community. The presented database is aimed at aiding soft roboticists in designing and modeling soft robots while providing a starting point for future material characterizations related to soft robotics research.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available