4.6 Article

Theoretical prediction, synthesis, and crystal structure determination of new MAX phase compound V2SnC

Journal

JOURNAL OF ADVANCED CERAMICS
Volume 9, Issue 4, Pages 481-492

Publisher

SPRINGER
DOI: 10.1007/s40145-020-0391-8

Keywords

V2SnC; new MAX phase compound; crystal structure; first-principles calculations

Funding

  1. Thousand Talents Program of Sichuan Province
  2. Open Project of State Key Laboratory Cultivation Base for Nonmetal Composites and Functional Materials [17kffk01]
  3. Outstanding Young Scientific and Technical Talents in Sichuan Province [2019JDJQ0009]
  4. National Natural Science Foundation of China [51741208]

Ask authors/readers for more resources

Guided by the theoretical prediction, a new MAX phase V2SnC was synthesized experimentally for the first time by reaction of V, Sn, and C mixtures at 1000 degrees C. The chemical composition and crystal structure of this new compound were identified by the cross-check combination of first-principles calculations, X-ray diffraction (XRD), energy dispersive X-ray spectroscopy (EDS), and high resolution scanning transmission electron microscopy (HR-STEM). The stacking sequence of V2C and Sn layers results in a crystal structure of space group P6(3)/mmc. Thea- andc-lattice parameters, which were determined by the Rietveld analysis of powder XRD pattern, are 0.2981(0) nm and 1.3470(6) nm, respectively. The atomic positions are V at 4f (1/3, 2/3, 0.0776(5)), Sn at 2d (2/3, 1/3, 1/4), and C at 2a (0, 0, 0). A new set of XRD data of V2SnC was also obtained. Theoretical calculations suggest that this new compound is stable with negative formation energy and formation enthalpy, satisfied Born-Huang criteria of mechanical stability, and positive phonon branches over the Brillouin zone. It also has low shear deformation resistancec(44)(second-order elastic constant,c(ij)) and shear modulus (G), positive Cauchy pressure, and low Pugh's ratio (G/B= 0.500 < 0.571), which is regarded as a quasi-ductile MAX phase. The mechanism underpinning the quasi-ductility is associated with the presence of a metallic bond.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available