4.8 Article

The Generation of an Engineered Interleukin-10 Protein With Improved Stability and Biological Function

Journal

FRONTIERS IN IMMUNOLOGY
Volume 11, Issue -, Pages -

Publisher

FRONTIERS MEDIA SA
DOI: 10.3389/fimmu.2020.01794

Keywords

interleukin-10; immunoregulation; inflammation; cytokine; covalent linker; stable dimer

Categories

Funding

  1. Umm AlQura University, Saudi Arabia [UMU740]
  2. UK Medical Research Council (MRC) [MR/R010099/1]
  3. UK Department for International Development (DFID) [MR/R010099/1]
  4. European Union
  5. MRC [MR/R010099/1]
  6. MRC [MR/R010099/1] Funding Source: UKRI

Ask authors/readers for more resources

Interleukin-10 (IL-10) is an immunoregulatory cytokine that plays a pivotal role in modulating inflammation. IL-10 has inhibitory effects on proinflammatory cytokine production and functionin vitroandin vivo; as such, IL-10 is viewed as a potential treatment for various inflammatory diseases. However, a significant drawback of using IL-10 in clinical application is the fact that the biologically active form of IL-10 is an unstable homodimer, which has a short half-life and is easily degradedin vivo. Consequently, IL-10 therapy using recombinant native IL-10 has had only limited success in the treatment of human disease. To improve the therapeutic potential of IL-10, we have generated a novel form of IL-10, which consists of two IL-10 monomer subunits linked in a head to tail fashion by a flexible linker. We show that the linker lengthper sedid not affect the expression and biological activity of the stable IL-10 molecule, which was more active than natural IL-10, bothin vitroandin vivo. We confirmed that the new form of IL-10 had a much-improved temperature- and pH-dependent biological stability compared to natural IL-10. The IL-10 dimer protein binds to the IL-10 receptor similarly to the natural IL-10 protein, as shown by antibody blocking and through the genetic modifications of one monomer in the IL-10 dimer specifically at the IL-10 receptor binding site. Finally, we showed that stable IL-10 is more effective at suppressing LPS-induced-inflammationin vivocompared to the natural IL-10. In conclusion, we have developed a new stable dimer version of the IL-10 protein with improved stability and efficacy to suppress inflammation. We propose that this novel stable IL-10 dimer could serve as the basis for the development of targeted anti-inflammatory drugs.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available