4.6 Article

Nonlinear Elastic Wave Energy Imaging for the Detection and Localization of In-Sight and Out-of-Sight Defects in Composites

Journal

APPLIED SCIENCES-BASEL
Volume 10, Issue 11, Pages -

Publisher

MDPI
DOI: 10.3390/app10113924

Keywords

composites; NDT; local defect resonance; nonlinearity; laser Doppler vibrometry; band power; short-time Fourier transform; out-of-sight damage detection

Funding

  1. Fonds voor Wetenschappelijk Onderzoek FWO [1148018N, 1S11520N, 12T5418N]
  2. SBO project DETECT-IV [160455]
  3. SIM (Strategic Initiative Materials in Flanders)
  4. VLAIO (Flemish government agency Flanders Innovation and Entrepreneurship)

Ask authors/readers for more resources

In this study, both linear and nonlinear vibrational defect imaging is performed for a cross-ply carbon fiber-reinforced polymer (CFRP) plate with artificial delaminations and for a quasi-isotropic CFRP with delaminations at the edge. The measured broadband chirp vibrational response is decomposed into different components: the linear response and the nonlinear response in terms of the higher harmonics. This decomposition is performed using the short-time Fourier transformation combined with bandpass filtering in the time-frequency domain. The linear and nonlinear vibrational response of the defect is analyzed by calculation of the defect-to-background ratio. Damage maps are created using band power calculation, which does not require any user-input nor prior information about the inspected sample. It is shown that the damage map resulting from the linear band power shows high sensitivity to shallow defects, while the damage map associated to the nonlinear band power shows a high sensitivity to both shallow and deep defects. Finally, a baseline-free framework is proposed for the detection and localization of out-of-sight damage. The damage is localized by source localization of the observed nonlinear wave components in the wavenumber domain.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available