4.7 Article

Linear stability and adjoint sensitivity analysis of thermoacoustic networks with premixed flames

Journal

COMBUSTION AND FLAME
Volume 165, Issue -, Pages 97-108

Publisher

ELSEVIER SCIENCE INC
DOI: 10.1016/j.combustflame.2015.10.011

Keywords

Premixed flame response; Flame Transfer Function; Thermoacoustic instabilities; Adjoint sensitivity analysis

Funding

  1. European Research Council [2590620]

Ask authors/readers for more resources

We analyse the linear response of laminar conical premixed flames modelled with the linearised front-track kinematic G-equation. We start by considering the case in which the flame speed is fixed, and travelling wave velocity perturbations are adverted at a speed different from the mean flow velocity. A previous study of this case contains a small error in the Flame Transfer Function (FTF), which we correct. We then allow the flame speed to depend on curvature. No analytical solutions for the FTF exist for this case so the FIT has to be calculated numerically as its parameters - aspect ratio, convection speed and Markstein length - are varied. Then we consider the stability and sensitivity of thermoacoustic systems containing these flames. Traditionally, the stability of a thermoacoustic system is found by embedding the FIT within an acoustic network model. This can be expensive, however, because the FIT must be re-calculated whenever a flame parameter is varied. Instead, we couple the linearised G-equation directly with an acoustic network model, creating a linear eigenvalue problem without explicit knowledge of the FTF. This provides a simple and quick way to analyse the stability of thermoacoustic networks. It also allows us to use adjoint sensitivity analysis to examine, at little extra cost, how the system's stability is affected by every parameter of the system. (C) 2015 The Combustion Institute. Published by Elsevier Inc. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available