4.6 Article

Analysis of the Supercritical Water Gasification of Cellulose in a Continuous System Using Short Residence Times

Journal

APPLIED SCIENCES-BASEL
Volume 10, Issue 15, Pages -

Publisher

MDPI
DOI: 10.3390/app10155185

Keywords

supercritical water gasification; cellulose; hydrogen; continuous reactor; process parameters; kinetics

Funding

  1. project FEDER [UCA18-108297]

Ask authors/readers for more resources

Supercritical Water Gasification (SCWG) has the capacity to generate fuel gas effluent from wet biomass without previously having to dry the biomass. However, substantial efforts are still required to make it a feasible and competitive technology for hydrogen production. Biomass contains cellulose, hemicellulose and lignin, so it is essential to understand their behavior in high-pressure systems in order to optimize hydrogen production. As the main component of biomass, cellulose has been extensively studied, and its decomposition has been carried out at both subcritical and supercritical conditions. Most previous works of this model compound were carried out in batch reactors, where reaction times normally take place in a few minutes. However, the present study demonstrates that gasification reactions can achieve efficiency levels of up to 100% in less than ten seconds. The effect of temperature (450-560 degrees C), the amount of oxidant (from no addition of oxidant to an excess over stoichiometric of 10%, n = 1.1), the initial concentration of organic matter (0.25-2 wt.%) and the addition of a catalyst on the SCWG of cellulose in a continuous tubular reactor at short residence times (from 6 to 10 s) have been studied in this work. Hydrogen yields close to 100% in the gas phase were obtained when operating under optimal conditions. Moreover, a validation of the experimental data has been conducted based on the theoretical data obtained from its kinetics.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available