4.8 Article

Generalizable, Reproducible, and Neuroscientifically Interpretable Imaging Biomarkers for Alzheimer's Disease

Journal

ADVANCED SCIENCE
Volume 7, Issue 14, Pages -

Publisher

WILEY
DOI: 10.1002/advs.202000675

Keywords

Alzheimer's disease; computer-aided diagnosis; neurobiological basis; neuroscientifically interpretable biomarkers; structural magnetic resonance imaging

Funding

  1. National Key Research and Development Program of China [2016YFC1305904, 2018YFC2001700]
  2. Strategic Priority Research Program (B) of the Chinese Academy of Sciences [XDB32020200]
  3. National Natural Science Foundation of China [81871438, 81901101, 61633018, 81571062, 81400890, 81471120, 81701781]
  4. Medical Big Data R&D Project of the PLA General Hospital [2018MBD028]
  5. Alzheimer's Disease Neuroimaging Initiative (ADNI) (National Institutes of Health) [U01 AG024904]
  6. DOD ADNI (Department of Defense) [W81XWH-12-2-0012]
  7. National Institute on Aging
  8. National Institute of Biomedical Imaging and Bioengineering
  9. AbbVie
  10. Alzheimer's Association
  11. Alzheimer's Drug Discovery Foundation
  12. Araclon Biotech
  13. BioClinica, Inc.
  14. Biogen
  15. Bristol-Myers Squibb Company
  16. CereSpir, Inc.
  17. Cogstate
  18. Eisai Inc.
  19. Elan Pharmaceuticals, Inc.
  20. Eli Lilly and Company
  21. EuroImmun
  22. F. Hoffmann-La Roche Ltd and its affiliated company Genentech, Inc.
  23. Fujirebio
  24. GE Healthcare
  25. IXICO Ltd.
  26. Janssen Alzheimer Immunotherapy Research & Development, LLC.
  27. Johnson & Johnson Pharmaceutical Research & Development LLC.
  28. Lumosity
  29. Lundbeck
  30. Merck Co., Inc.
  31. Meso Scale Diagnostics, LLC.
  32. NeuroRx Research
  33. Neurotrack Technologies
  34. Novartis Pharmaceuticals Corporation
  35. Pfizer Inc.
  36. Piramal Imaging
  37. Servier
  38. Takeda Pharmaceutical Company
  39. Transition Therapeutics
  40. Canadian Institutes of Health Research

Ask authors/readers for more resources

Precision medicine for Alzheimer's disease (AD) necessitates the development of personalized, reproducible, and neuroscientifically interpretable biomarkers, yet despite remarkable advances, few such biomarkers are available. Also, a comprehensive evaluation of the neurobiological basis and generalizability of the end-to-end machine learning system should be given the highest priority. For this reason, a deep learning model (3D attention network, 3DAN) that can simultaneously capture candidate imaging biomarkers with an attention mechanism module and advance the diagnosis of AD based on structural magnetic resonance imaging is proposed. The generalizability and reproducibility are evaluated using cross-validation on in-house, multicenter (n = 716), and public (n = 1116) databases with an accuracy up to 92%. Significant associations between the classification output and clinical characteristics of AD and mild cognitive impairment (MCI, a middle stage of dementia) groups provide solid neurobiological support for the 3DAN model. The effectiveness of the 3DAN model is further validated by its good performance in predicting the MCI subjects who progress to AD with an accuracy of 72%. Collectively, the findings highlight the potential for structural brain imaging to provide a generalizable, and neuroscientifically interpretable imaging biomarker that can support clinicians in the early diagnosis of AD.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available