4.8 Article

A Fully Phase-Modulated Metasurface as An Energy-Controllable Circular Polarization Router

Journal

ADVANCED SCIENCE
Volume 7, Issue 18, Pages -

Publisher

WILEY
DOI: 10.1002/advs.202001437

Keywords

circular polarization; energy-control; metasurfaces; phase modulation; routers

Funding

  1. National Natural Science Foundation of China [61771172, 61401122]

Ask authors/readers for more resources

Geometric metasurfaces primarily follow the physical mechanism of Pancharatnam-Berry (PB) phases, empowering wavefront control of cross-polarized reflective/transmissive light components. However, inherently accompanying the cross-polarized components, the copolarized output components have not been attempted in parallel in existing works. Here, a general method is proposed to construct phase-modulated metasurfaces for implementing functionalities separately in co- and cross-polarized output fields under circularly polarized (CP) incidence, which is impossible to achieve with solely a geometric phase. By introducing a propagation phase as an additional degree of freedom, the electromagnetic (EM) energy carried by co- and cross-polarized transmitted fields can be fully phase-modulated with independent wavefronts. Under one CP incidence, a metasurface for separate functionalities with controllable energy repartition is verified by simulations and proof-of-principle microwave experiments. A variety of applications can be readily expected in spin-selective optics, spin-Hall metasurfaces, and multitasked metasurfaces operating in both reflective and transmissive modes.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available