4.1 Article

Melting points of one- and two-component molecular crystals as effective characteristics for rational design of pharmaceutical systems

Publisher

INT UNION CRYSTALLOGRAPHY
DOI: 10.1107/S2052520620007362

Keywords

two-component molecular crystals; melting points; correlation equation; polymorphism; co-crystals with different stoichiometry; co-crystals with different enantiomers; parameter efficacy

Funding

  1. Russian Science Foundation [19-13-00017]
  2. Russian Science Foundation [19-13-00017] Funding Source: Russian Science Foundation

Ask authors/readers for more resources

Based on the review of the literature results the database of the fusion temperatures of two-component molecular crystals (1947 co-crystals) and individual components thereof was built up. To improve the design of co-crystals with predictable melting temperatures, the correlation equations connecting co-crystals and individual components melting points were deduced. These correlations were discovered for 18 co-crystals of different stoichiometric compositions. The correlation coefficients were analysed, and the conclusions about the main/determinative and slave components of a co-crystal were made. The comparative analysis of the melting points of co-crystals composed from the same components but with different stoichiometry showed a co-crystal melting temperature growth when increasing the content of a high-melting component. The differences in the melting temperatures were determined and discussed for the following: (a) monotropic polymorphic forms, (b) two-component crystals with the same composition and different stoichiometry, and (c) two-component crystals based on racemates and enantiomers. The database analysis revealed the active pharmaceutical ingredients (APIs) and co-formers (CFs) more particularly used for co-crystal design. The approach based on an efficacy parameter allowing the prediction of co-crystals with melting points lower than those of individual compounds was developed.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.1
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available