3.8 Article

Instant Self-Assembly Peptide Hydrogel Encapsulation with Fibrous Alginate by Microfluidics for Infected Wound Healing

Journal

ACS BIOMATERIALS SCIENCE & ENGINEERING
Volume 6, Issue 9, Pages 5001-5011

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/acsbiomaterials.0c00581

Keywords

peptide hydrogel; microfibers; microfluidics; dual-drug delivery; wound healing

Funding

  1. National Natural Science Foundation of China [21605160]
  2. Jiangsu Natural Science Foundation [BK20171387]
  3. Jiangsu Innovation and Enterpreneurship Project
  4. Open Research Fund of State Key Laboratory of Bioelectronics Southeast University
  5. Double First-Class University project [CPU2018GY25]

Ask authors/readers for more resources

Infected wounds caused by persistent inflammation exhibit poor vascularization and cellular infiltration. In order to rapidly control the inflammatory effect and accelerate wound healing, it is necessary to develop a novel drug vehicle addressing the need for infected wounds. Herein, we developed a novel dual-drug delivery system with micrometer-scale alginate fibers encapsulated in instant self-assembly peptide hydrogel. Short peptides with the sequence of Nap-Gly-Phe-Phe-Lys-His (Nap-GFFKH) could self-assemble outside the microfluidic-based alginate microfibers in weak acidic solution (pH approximate to 6.0) within 5 s. The gelation condition is close to the pH environment of the human skin. We further constructed recombinant bovine basic fibroblast growth factor (FGF-2) in fibrous alginate, which was encapsulated in antibiotic-loaded peptide hydrogel. The dual-drug delivery system exhibited good mechanical property and sustained release profiles, where antibiotic could be rapidly released from the peptide hydrogel, while the growth factor could be gradually released within 7 days. Both in vitro antibacterial experiments and in vivo animal experiments confirmed that such a dual-drug delivery system has good antibacterial activity and enhances wound healing property. We suggested that the dual-drug delivery system could be potentially applied for controlled drug release in infected wound healing, drug combination for melanoma therapy, and tissue engineering.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

3.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available