4.5 Article

Alignment of Polarization against an Electric Field in van der Waals Ferroelectrics

Journal

PHYSICAL REVIEW APPLIED
Volume 13, Issue 6, Pages -

Publisher

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevApplied.13.064063

Keywords

-

Funding

  1. U.S. Department of Energy (DOE), Office of Science, Basic Energy Sciences, Materials Science, and Engineering Division
  2. U.S. Department of Energy, Office of Science, Division of Materials Science and Engineering Grant [DE-FG02-09ER46554]
  3. McMinn Endowment
  4. NSF/AFOSR EFRI 2DARE programme
  5. ARO programme

Ask authors/readers for more resources

Polarization in ferroelectrics can be switched in the direction of an applied electric field by dipole reorientation, enabling numerous applications and fundamental phenomena. Here, we demonstrate that, in the van der Waals (vdW) layered ferrielectric CuInP2S6, a unique mechanism exists where polarization aligns against the direction of the applied electric field, seemingly in violation of the fundamental properties of a dipolar solid. The mechanism is the result of the electric field driving the Cu atoms unidirectionally across the vdW gaps, which is distinctively different from dipole reorientation. The crossing of Cu atoms is the fundamental process of ionic conductivity, yet it is compatible with the existence of polarization. These phenomena are confirmed by nanoscale imaging and spectroscopy of ferroelectric capacitors, coupled with dynamic density-functional-theory simulations. The symbiotic relationship of ferroelectric and ionic phenomena enables alternative approaches to control polarization and necessitates a change in perspective on nucleation, domain-wall dynamics, and other ferroelectric and electromechanical characteristics in material systems where ionic and ferroelectric phenomena manifest.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available