4.7 Article

Graphene Oxide: Study of Pore Size Distribution and Surface Chemistry Using Immersion Calorimetry

Journal

NANOMATERIALS
Volume 10, Issue 8, Pages -

Publisher

MDPI
DOI: 10.3390/nano10081492

Keywords

graphene oxide; PSD; immersion calorimetry; hummer method; probe molecules; QSDFT; NLDFT

Funding

  1. COLCIENCIAS [163-2019, 120480863981]

Ask authors/readers for more resources

In this work, the textural parameters of graphene oxide (GO) and graphite (Gr) samples were determined. The non-local density functional theory (NLDFT) and quenched solid density functional theory (QSDFT) kernels were used to evaluate the pore size distribution (PSD) by modeling the pores as slit, cylinder and slit-cylinder. The PSD results were compared with the immersion enthalpies obtained using molecules with different kinetic diameter (between 0.272 nm and 1.50 nm). Determination of immersion enthalpy showed to track PSD for GO and graphite (Gr), which was used as a comparison solid. Additionally, the functional groups of Gr and GO were determined by the Boehm method. Donor number (DN) Gutmann was used as criteria to establish the relationship between the immersion enthalpy and the parameter of the probe molecules. It was found that according to the Gutmann DN the immersion enthalpy presented different values that were a function of the chemical groups of the materials. Finally, the experimental and modeling results were critically discussed.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available