4.5 Article

Effects of Second-Phase Particles on Microstructure Evolution in Mg-2Zn Based Magnesium Alloys during Annealing Treatment

Journal

METALS
Volume 10, Issue 6, Pages -

Publisher

MDPI
DOI: 10.3390/met10060777

Keywords

magnesium alloys; second-phase particles; annealing treatment; microstructure evolution; basal texture

Funding

  1. Fundamental Research Funds for the Central Universities [2302019FRF-IC-19-018]
  2. Aviation Science Foundation Project [20181174001]

Ask authors/readers for more resources

As an important fabrication process, annealing treatment is conducted to eliminate distortion in magnesium alloy sheets. Second-phase particles can provide nucleation sites for recrystallization grains, and the basal texture is related to the recrystallization behavior. Three experimental Mg-2Zn-based magnesium alloy sheets were investigated by the salt bath annealing process. Combined with variations in hardness softening, evolution of microstructure and basal texture, the effect of second-phase particles on microstructure evolution was analyzed. The results showed that the significant influence of size and distribution of second-phase particles on static recrystallization in magnesium alloy sheets was exhibited, which lead to the formation of two stages in the annealing process, combined with static recovery behavior. Second phase particles with coarse size were beneficial to recrystallization grains' nucleation and increased recrystallization behavior in the initial stage of annealing. Second-phase particles with fine size inhibited recrystallization behavior and weakened the softening of hardness. The basal texture was weakened by second phase particles at the stage of recrystallization nucleation. The change in basal texture at the stage of grain growth was related to the size of second-phase particles. The regulation of basal texture enhancement can be envisioned by modifying second-phase particles.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available