4.5 Article

Acetonitrile-Based Electrolytes for Rechargeable Zinc Batteries

Journal

ENERGY TECHNOLOGY
Volume 8, Issue 9, Pages -

Publisher

WILEY-V C H VERLAG GMBH
DOI: 10.1002/ente.202000358

Keywords

current collector; nonaqueous electrolytes; plating-stripping; surface analysis; Zn metal

Categories

Funding

  1. Swedish energy agency
  2. STandUP for Energy
  3. Swedish Research Council for Environment, Agricultural Sciences and Spatial Planning (FORMAS) [2016-01257]
  4. Formas [2016-01257] Funding Source: Formas

Ask authors/readers for more resources

Herein, Zn plating-stripping onto metallic Zn using a couple of acetonitrile (AN)-based electrolytes (0.5 mZn(TFSI)(2)/AN and 0.5 mZn(CF3SO3)(2)/AN) is studied. Both electrolytes show a reversible Zn plating/stripping over 1000 cycles at different applied current densities varying from 1.25 to 10 mA cm(-2). The overpotentials of Zn plating-stripping over 500 cycles at constant current of 1.25 and 10 mA cm(-2)are +/- 0.05 and +/- 0.2 V, respectively. X-ray photoelectron spectroscopy analysis reveals that no decomposition product is formed on the Zn surface. The anodic stability of four different current collectors of aluminum foil (Al), carbon-coated aluminum foil (C/Al), TiN-coated titanium foil (TiN/Ti), and multiwalled carbon nanotube paper (MWCNT-paper) is tested in both electrolytes. As a general trend, the current collectors have a higher anodic stability in Zn(TFSI)(2)/AN compared with Zn(CF3SO3)(2)/AN. The Al foil displays the highest anodic stability of approximate to 2.25 V versus Zn2+/Zn in Zn(TFSI)(2)/AN electrolyte. The TiN/Ti shows a comparable anodic stability with that of Al foil, but its anodic current density is higher than Al. The promising reversibility of the Zn plating/stripping combined with the anodic stability of Al and TiN/Ti current collectors paves the way for establishing highly reversible Zn-ion batteries.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available