4.5 Article

High-Performance Aqueous Supercapacitors Based on Biomass-Derived Multiheteroatom Self-Doped Porous Carbon Membranes

Journal

ENERGY TECHNOLOGY
Volume 8, Issue 9, Pages -

Publisher

WILEY-V C H VERLAG GMBH
DOI: 10.1002/ente.202000391

Keywords

biomass; lettuce; porous carbon membranes; superb stabilities; supercapacitors

Categories

Funding

  1. Foundation of Academic Top-notch Talent Support Program of North Minzu University [2019BGBZ08]
  2. Natural Science Foundation of Ningxia Province [2018AAC02011]
  3. National Natural Science Foundation of China [21763001]
  4. West Light Foundation of the Chinese Academy of Sciences [XAB2018AW13]
  5. Graduate Student Innovation Project of North Minzu University [YCX20132, YCX20135]
  6. Foundation of Training Program for Yong and Middle-aged Talents of State Ethnic Affairs Commission of China

Ask authors/readers for more resources

Porous carbons derived from widely accessible, renewable, and low-cost biomass are being extensively pursued as biocompatible electrode materials for next-generation supercapacitors (SCs), but their practical application is being largely restricted by insufficient performance related to their powdery status. Herein, a porous carbon membrane (denoted as lettuce-derived carbon membrane [LCM]) is developed by direct and controllable carbonization of biomass lettuce. By taking the advantages of the inherent microstructure and composition of the lettuce, the as-fabricated LCM electrode is endowed with a large specific surface area, interconnected hierarchical pores, and multiheteroatom (N, P, and S) doping. The benefits originating from the structure synergy provide this LCM electrode excellent electrochemical performance in an aqueous symmetric SC, exhibiting a high specific capacitance of 213.4 F g(-1)at 0.2 A g(-1), outstanding rate capability (78.6% capacitance retention at 10 A g(-1)), and superior cycling stability (96.9% capacitance retention after 100 000 cycles at 5 A g(-1)) and unit Coulombic efficiency. Notably, the LCM-based SC delivers the highest energy density of 7.41 Wh kg(-1)with a power density of 50.4 W kg(-1)at 0.2 A g(-1). This device-compatible porous carbon membrane can be applied to other advanced energy-storage and conversion devices with a high electrochemical performance.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available