4.7 Article

Amphipathic silica nanoparticles induce cytotoxicity through oxidative stress mediated and p53 dependent apoptosis pathway in human liver cell line HL-7702 and rat liver cell line BRL-3A

Journal

COLLOIDS AND SURFACES B-BIOINTERFACES
Volume 145, Issue -, Pages 232-240

Publisher

ELSEVIER SCIENCE BV
DOI: 10.1016/j.colsurfb.2016.05.006

Keywords

Silica nanoparticles; Hepatotoxicity; Oxidative stress; p53; Apoptosis

Funding

  1. National Science and Technology Major Projects of China [2013ZX09302304]
  2. Liaoning Province Undergraduate Training Program for Innovation and Entrepreneurship of China [125010128]

Ask authors/readers for more resources

The aim of this study was to evaluate the potential cytotoxicity and the underlying mechanism of amphipathic silica nanoparticles (SiO2 NPs) exposure to human normal liver HL-7702 cells and rat normal liver BRL-3A cells. Prior to the cellular studies, transmission electron microscopy (TEM), dynamic light scattering (DLS), and X ray diffraction (XRD) were used to characterize SiO2 NPs, which proved the amorphous nature of SiO2 NPs with TEM diameter of 19.8 +/- 2.7 nm. Further studies proved that exposure to SiO2 NPs dose-dependently induced cytotoxicity as revealed by cell counting kit (CCK-8) and lactate dehydrogenase (LDH) assays, with more severe cytotoxicity in HL-7702 cells than BRL-3A cells. Reactive oxygen species (ROS) and glutathione (GSH) assays showed elevated oxidative stress in both cells. Morphological studies by microscopic observation, Hochest 33258 and AO/EB staining indicated significant apoptotic changes after the cells being exposed to SiO2 NPs. Further studies by western blot indicated that SiO2 NPs exposure to both cells up-regulated p53, Box and cleaved caspase-3 expression and down-regulated Bcl2 and caspase-3 levels. Activated caspase-3 activity detected by colorimetric assay kit and caspase-3/7 activity detected by fluorescent real-time detection kit were significantly increased by SiO2 NPs exposure. In addition, antioxidant vitamin C significantly attenuated SiO2 NPs-induced caspase-3 activation, which indicated that SiO2 NPs-induced oxidative stress was involved in the process of HL-7702 and BRL-3A cell apoptosis. Taken together, these results suggested that SiO2 NPs-induced cytotoxicity in HL-7702 and BRL-3A cells was through oxidative stress mediated and p53, caspase-3 and Bax/Bcl-2 dependent pathway and HL-7702 cells were more sensitive to SiO2 NPs-induced cytotoxicity than BRL-3A cells. (C) 2016 Elsevier B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available