4.7 Article

Dynamic interactions of amelogenin with hydroxyapatite surfaces are dependent on protein phosphorylation and solution pH

Journal

COLLOIDS AND SURFACES B-BIOINTERFACES
Volume 148, Issue -, Pages 377-384

Publisher

ELSEVIER SCIENCE BV
DOI: 10.1016/j.colsurfb.2016.09.010

Keywords

Amelogenin; Phosphorylation; Hydroxyapatite; Quartz crystal microbalance; Adsorption

Funding

  1. NIH [DE016376-05S1, DE023091]

Ask authors/readers for more resources

Amelogenin, the predominant extracellular matrix protein secreted by ameloblasts, has been shown to be essential for proper tooth enamel formation. In this study, amelogenin adsorption to hydroxyapatite (HAP) surfaces, a prototype for enamel mineral, has been studied using a quartz crystal microbalance (QCM) to interrogate effects of protein phosphorylation and solution pH. Dynamic flow-based experiments were conducted at pH 7.4 and 8.0 using native phosphorylated porcine amelogenin (P173) and recombinant non-phosphorylated porcine amelogenin (rP172). Loading capacities (mu mol/m(2)) on HAP surfaces were calculated under all conditions and adsorption affinities (K-ad) were calculated when Langmuir isotherm conditions appeared to be met. At pH 8.0, binding characteristics were remarkably similar for the two proteins. However, at pH 7.4 a higher affinity and lower surface loading for the phosphorylated P173 was found compared to any other set of conditions. This suggests that phosphorylated P173 adopts a more extended conformation than non-phosphorylated full-length amelogenin, occupying a larger footprint on the HAP surface. This surface-induced structural difference may help explain why P173 is a more effective inhibitor of spontaneous HAP formation in vitro than rP172. Differences in the viscoelastic properties of P173 and rP172 in the adsorbed state were also observed, consistent with noted differences in HAP binding. These collective findings provide new insight into the important role of amelogenin phosphorylation in the mechanism by which amelogenin regulates enamel crystal formation. (C) 2016 Elsevier B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available