4.4 Article

Functional methods for Heavy Quark Effective Theory

Journal

JOURNAL OF HIGH ENERGY PHYSICS
Volume -, Issue 6, Pages -

Publisher

SPRINGER
DOI: 10.1007/JHEP06(2020)164

Keywords

Effective Field Theories; Heavy Quark Physics

Funding

  1. U.S. Department of Energy (DOE) [DE-SC0011640]
  2. DOE [DE-SC0010008]
  3. Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) under Germany's Excellence Strategy [EXC-2094 - 390783311]
  4. National Science Foundation [PHY-1607611]
  5. Zuckerman STEM Leadership Program

Ask authors/readers for more resources

We use functional methods to compute one-loop effects in Heavy Quark Effective Theory. The covariant derivative expansion technique facilitates the efficient extraction of matching coefficients and renormalization group evolution equations. This paper pro- vides the first demonstration that such calculations can be performed through the algebraic evaluation of the path integral for the class of effective field theories that are (i) constructed using a non-trivial one-to-many mode decomposition of the UV theory, and (ii) valid for non-relativistic kinematics. We discuss the interplay between operators that appear at intermediate steps and the constraints imposed by the residual Lorentz symmetry that is encoded as reparameterization invariance within the effective description. The tools presented here provide a systematic approach for computing corrections to higher order in the heavy mass expansion; precision applications include predictions for experimental data and connections to theoretical tests via lattice QCD. A set of pedagogical appendices comprehensively reviews modern approaches to performing functional calculations algebraically, and derives contributions from a term with open covariant derivatives for the first time.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available