4.6 Article

Knowledge Graph-Enabled Cancer Data Analytics

Journal

IEEE JOURNAL OF BIOMEDICAL AND HEALTH INFORMATICS
Volume 24, Issue 7, Pages 1952-1967

Publisher

IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
DOI: 10.1109/JBHI.2020.2990797

Keywords

Cancer; Resource description framework; Tumors; Data models; Libraries; Data analysis; Data visualization; Knowledge graph; cancer registry; treatment

Funding

  1. U.S. Department of Energy [DE-AC05-00OR22725]

Ask authors/readers for more resources

Cancer registries collect unstructured and structured cancer data for surveillance purposes which provide important insights regarding cancer characteristics, treatments, and outcomes. Cancer registry data typically (1) categorize each reportable cancer case or tumor at the time of diagnosis, (2) contain demographic information about the patient such as age, gender, and location at time of diagnosis, (3) include planned and completed primary treatment information, and (4) may contain survival outcomes. As structured data is being extracted from various unstructured sources, such as pathology reports, radiology reports, medical records, and stored for reporting and other needs, the associated information representing a reportable cancer is constantly expanding and evolving. While some popular analytic approaches including SEER*Stat and SAS exist, we provide a knowledge graph approach to organizing cancer registry data. Our approach offers unique advantages for timely data analysis and presentation and visualization of valuable information. This knowledge graph approach semantically enriches the data, and easily enables linking with third-party data which can help explain variation in cancer incidence patterns, disparities, and outcomes. We developed a prototype knowledge graph based on the Louisiana Tumor Registry dataset. We present the advantages of the knowledge graph approach by examining: i) scenario-specific queries, ii) links with openly available external datasets, iii) schema evolution for iterative analysis, and iv) data visualization. Our results demonstrate that this graph based solution can perform complex queries, improve query run-time performance by up to 76%, and more easily conduct iterative analyses to enhance researchers' understanding of cancer registry data.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available