4.6 Article

Effect of roughness and shape factor on flotation characteristics of glass beads

Publisher

ELSEVIER
DOI: 10.1016/j.colsurfa.2015.12.025

Keywords

Roughness; Shape factor; Flotation; Atomic Force Microscopy (AFM); Bubble Attachment; Contact angle

Ask authors/readers for more resources

The effect of surface roughness and shape factor on behavior of particles in flotation has been investigated. Surface roughness of various degrees was applied on spherical glass beads of 150 + 106 mu m by means of acid etching. The same procedure was also performed on ground glass beads of the same size interval with different shape factors. The effect of these variations on surface morphology of particles was investigated in terms of flotation recovery, contact angle, and bubble-particle attachment. An Atomic Force Microscope (AFM) was used for surface roughness characterizations and a correction methodology on roughness measurements of spherical particles is proposed. A digital image analyzer was used for shape factor characterizations. It is shown that increase in surface roughness improves the flotation recovery, contact angle, and bubble attachment. Shape factor, however, was found to be more predominant in flotation and bubble attachment. This is attributed to the effect of sharp edges of ground particles which triggers the film rupture process and shortens the attachment time. (C) 2015 Elsevier B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available