4.6 Article

Elimination of Fluorination: The Influence of Fluorine-Free Electrolytes on the Performance of LiNi1/3Mn1/3Co1/3O2/Silicon-Graphite Li-Ion Battery Cells

Journal

ACS SUSTAINABLE CHEMISTRY & ENGINEERING
Volume 8, Issue 27, Pages 10041-10052

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/acssuschemeng.0c01733

Keywords

fluorine free; lithium-ion batteries full cell; silicon-graphite; solid electrolyte interphase; lithium bis(oxalate)borate

Funding

  1. STandUP for Energy
  2. SiLiCoat (Swedish Energy Agency) [40466-1]
  3. Sintbat (European Union H2020 research and innovation programme) [685716]
  4. project CALIPSOplus (European Union H2020 research and innovation programme) [730872]

Ask authors/readers for more resources

In the quest for environmentally friendly and safe batteries, moving from fluorinated electrolytes that are toxic and release corrosive compounds, such as HF, is a necessary step. Here, the effects of electrolyte fluorination are investigated for full cells combining silicon- graphite composite electrodes with Li-Ni1/3Mn1/3Co1/3O2 (NMC111) cathodes, a viable cell chemistry for a range of potential battery applications, by means of electrochemical testing and postmortem surface analysis. A fluorine-free electrolyte based on lithium bis(oxalato) borate (LiBOB) and vinylene carbonate (VC) is able to provide higher discharge capacity (147 mAh g(NMC)(-1)) and longer cycle life at C/10 (84.4% capacity retention after 200 cycles) than a cell with a highly fluorinated electrolyte containing LiPF6, fluoroethylene carbonate (FEC) and VC. The cell with the fluorine-free electrolyte is able to form a stable solid electrolyte interphase (SEI) layer, has low overpotential, and shows a slow increase in cell resistance that leads to improved electrochemical performance. Although the power capability is limiting the performance of the fluorine-free electrolyte due to higher interfacial resistance, it is still able to provide long cycle life at C/2 and outperforms the highly fluorinated electrolyte at 40 degrees C. X-ray photoelectron spectroscopy (XPS) results showed a F-rich SEI with the highly fluorinated electrolyte, while the fluorine-free electrolyte formed an O-rich SEI. Although their composition is different, the electrochemical results show that both the highly fluorinated and fluorine-free electrolytes are able to stabilize the silicon-based anode and support stable cycling in full cells. While these results demonstrate the possibility to use a nonfluorinated electrolyte in high-energy-density full cells, they also address new challenges toward environmentally friendly and nontoxic electrolytes.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available