4.7 Article

Organic and Inorganic PCL-Based Electrospun Fibers

Journal

POLYMERS
Volume 12, Issue 6, Pages -

Publisher

MDPI
DOI: 10.3390/polym12061325

Keywords

electrospinning; PCL; organic nanoparticles; inorganic nanoparticles

Funding

  1. Spanish Ministry of Economy, Industry, and Competitiveness (MINEICO) [MAT2017-88123-P, PCIN-2017-036]
  2. EU FEDER funds
  3. MINEICO [FJCI-2017-33536, RYC-2014-15595]

Ask authors/readers for more resources

In this work, different nanocomposite electrospun fiber mats were obtained based on poly(e-caprolactone) (PCL) and reinforced with both organic and inorganic nanoparticles. In particular, on one side, cellulose nanocrystals (CNC) were synthesized and functionalized by grafting from reaction, using their superficial OH- group to graft PCL chains. On the other side, commercial chitosan, graphene as organic, while silver, hydroxyapatite, and fumed silica nanoparticles were used as inorganic reinforcements. All the nanoparticles were added at 1 wt% with respect to the PCL polymeric matrix in order to compare the different behavior of the woven no-woven nanocomposite electrospun fibers with a fixed amount of both organic and inorganic nanoparticles. From the thermal point of view, no difference was found between the effect of the addition of organic or inorganic nanoparticles, with no significant variation in the T-g(glass transition temperature), T-m(melting temperature), and the degree of crystallinity, leading in all cases to high crystallinity electrospun mats. From the mechanical point of view, the highest values of Young modulus were obtained when graphene, CNC, and silver nanoparticles were added to the PCL electrospun fibers. Moreover, all the nanoparticles used, both organic and inorganic, increased the flexibility of the electrospun mats, increasing their elongation at break.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available