4.6 Article

Nitric Oxide Mediates Neuro-Glial Interaction that Shapes Drosophila Circadian Behavior

Journal

PLOS GENETICS
Volume 16, Issue 6, Pages -

Publisher

PUBLIC LIBRARY SCIENCE
DOI: 10.1371/journal.pgen.1008312

Keywords

-

Funding

  1. Swiss National Science Foundation [31003A_169548]
  2. Plan Strategique Sciences Vie (PSVIE) of the University of Geneva
  3. Swiss National Science Foundation (SNF) [31003A_169548] Funding Source: Swiss National Science Foundation (SNF)

Ask authors/readers for more resources

Drosophila circadian behavior relies on the network of heterogeneous groups of clock neurons. Short- and long-range signaling within the pacemaker circuit coordinates molecular and neural rhythms of clock neurons to generate coherent behavioral output. The neurochemistry of circadian behavior is complex and remains incompletely understood. Here we demonstrate that the gaseous messenger nitric oxide (NO) is a signaling molecule linking circadian pacemaker to rhythmic locomotor activity. We show that mutants lacking nitric oxide synthase (NOS) have behavioral arrhythmia in constant darkness, although molecular clocks in the main pacemaker neurons are unaffected. Behavioral phenotypes of mutants are due in part to the malformation of neurites of the main pacemaker neurons, s-LNvs. Using cell-type selective and stage-specific gain- and loss-of-function of NOS, we also demonstrate that NO secreted from diverse cellular clusters affect behavioral rhythms. Furthermore, we identify the perineurial glia, one of the two glial subtypes that form the blood-brain barrier, as the major source of NO that regulates circadian locomotor output. These results reveal for the first time the critical role of NO signaling in the Drosophila circadian system and highlight the importance of neuro-glial interaction in the neural circuit output. Author summary Circadian rhythms are daily cycles of physiological and behavioral processes found in most organisms on our planet from cyanobacteria to humans. Circadian rhythms allow organisms to anticipate routine daily and annual changes of environmental conditions and efficiently adapt to them. Fruit fly Drosophila melanogaster is an excellent model to study this phenomenon, as its versatile toolkit enables the study of genetic, molecular and neuronal mechanisms of rhythm generation. Here we report for the first time that gasotransmitter nitric oxide (NO) has a broad, multi-faceted impact on Drosophila circadian rhythms, which takes place both during the development and the adulthood. We also show that one of the important contributors of NO to circadian rhythms are glial cells that form the blood-brain barrier. The second finding highlights that circadian rhythms of higher organisms are not simply controlled by the small number of pacemaker neurons but are generated by the system that consists of many different players, including glia.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available