4.7 Article

Detection of Standing Deadwood from Aerial Imagery Products: Two Methods for Addressing the Bare Ground Misclassification Issue

Journal

FORESTS
Volume 11, Issue 8, Pages -

Publisher

MDPI
DOI: 10.3390/f11080801

Keywords

deadwood detection; forest structure; remote sensing; orthophoto; RGBI; digital surface model; DSM; canopy height model CHM; random forest

Categories

Ask authors/readers for more resources

Deadwood mapping is of high relevance for studies on forest biodiversity, forest disturbance, and dynamics. As deadwood predominantly occurs in forests characterized by a high structural complexity and rugged terrain, the use of remote sensing offers numerous advantages over terrestrial inventory. However, deadwood misclassifications can occur in the presence of bare ground, displaying a similar spectral signature. In this study, we tested the potential to detect standing deadwood (h > 5 m) using orthophotos (0.5 m resolution) and digital surface models (DSM) (1 m resolution), both derived from stereo aerial image matching (0.2 m resolution and 60%/30% overlap (end/side lap)). Models were calibrated in a 600 ha mountain forest area that was rich in deadwood in various stages of decay. We employed random forest (RF) classification, followed by two approaches for addressing the deadwood-bare ground misclassification issue: (1) post-processing, with a mean neighborhood filter for deadwood-pixels and filtering out isolated pixels and (2) a deadwood-uncertainty filter, quantifying the probability of a deadwood-pixel to be correctly classified as a function of the environmental and spectral conditions in its neighborhood. RF model validation based on data partitioning delivered high user's (UA) and producer's (PA) accuracies (both > 0.9). Independent validation, however, revealed a high commission error for deadwood, mainly in areas with bare ground (UA = 0.60, PA = 0.87). Post-processing (1) and the application of the uncertainty filter (2) improved the distinction between deadwood and bare ground and led to a more balanced relation between UA and PA (UA of 0.69 and 0.74, PA of 0.79 and 0.80, under (1) and (2), respectively). Deadwood-pixels showed 90% location agreement with manually delineated reference to deadwood objects. With both alternative solutions, deadwood mapping achieved reliable results and the highest accuracies were obtained with deadwood-uncertainty filter. Since the information on surface heights was crucial for correct classification, enhancing DSM quality could substantially improve the results.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available