4.8 Article

Structural and Mechanistic Regulation of the Pro-degenerative NAD Hydrolase SARM1

Journal

CELL REPORTS
Volume 32, Issue 5, Pages -

Publisher

CELL PRESS
DOI: 10.1016/j.celrep.2020.107999

Keywords

-

Categories

Funding

  1. Cancer Prevention and Research Institute of Texas (CPRIT) core facility support award [RP170644]
  2. Nura Bio
  3. Cancer Prevention and Research Institute of Texas (CPRIT) [RR160082]
  4. Welch Foundation [I-1944-20180324]

Ask authors/readers for more resources

The NADase SARM1 is a central switch in injury-activated axon degeneration, an early hallmark of many neurological diseases, Here, we present cryo-electron microscopy (cryo-EM) structures of autoinhibited (3.3 angstrom) and active SARM1 (6.8 angstrom) and provide mechanistic insight into the tight regulation of SARM1's function by the local metabolic environment. Although both states retain an octameric core, the defining feature of the autoinhibited state is a lock between the autoinhibitory Armadillo/HEAT motif (ARM) and catalytic Toll/interleukin-1 receptor (TIR) domains, which traps SARM1 in an inactive state. Mutations that break this lock activate SARM1, resulting in catastrophic neuronal death. Notably, the mutants cannot be further activated by the endogenous activator nicotinamide mononucleotide (NMN), and active SARM1 is product inhibited by Nicotinamide (NAM), highlighting SARM1's functional dependence on key metabolites in the NAD salvage pathway. Our studies provide a molecular understanding of SARM1's transition from an autoinhibited to an injury-activated state and lay the foundation for future SARM1 -based therapies to treat axonopathies.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available