4.4 Article

Propofol suppresses hypoxia-induced esophageal cancer cell migration, invasion, andEMTthrough regulatinglncRNA TMPO-AS1/miR-498 axis

Journal

THORACIC CANCER
Volume 11, Issue 9, Pages 2398-2405

Publisher

WILEY
DOI: 10.1111/1759-7714.13534

Keywords

Esophageal cancer; hypoxia; miR-498; propofol; TMPO-AS1

Ask authors/readers for more resources

Background Propofol has been reported to be related to the migration, invasion, and epithelial-mesenchymal transition (EMT) of esophageal cancer (EC) cells. However, the detailed mechanism has not yet been fully reported. The purpose of this research was to elucidate the function of long non-coding RNA TMPO antisense RNA 1 (lncRNA TMPO-AS1) and microRNA-498 (miR-498) in propofol-regulated EC. Methods Transwell assay was performed to assess cell migratory and invasive abilities. Western blot assay was employed to determine the levels of EMT markers and hypoxia inducible factor-1 (HIF-1 alpha). Quantitative real-time polymerase chain reaction (qRT-PCR) was carried out to detect the levels of TMPO-AS1 and miR-498. Moreover, the interaction between TMPO-AS1 and miR-498 was predicted by starBase, and then confirmed by the dual-luciferase reporter assay and RNA immunoprecipitation (RIP) assay. Results Propofol suppressed hypoxia-induced EC cell migration, invasion, and EMT. Both TMPO-AS1 overexpression and miR-498 knockdown weakened the effect of propofol on hypoxia-induced EC cell progression. Interestingly, TMPO-AS1 targeted miR-498 and suppressed miR-498 expression. TMPO-AS1 regulated EC cell progression via downregulating miR-498 expression. Conclusions Collectively, our findings demonstrated that propofol inhibited hypoxia-induced EC cell mobility through modulation of the TMPO-AS1/miR-498 axis, providing a theoretical basis for the treatment of EC.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available