4.7 Article

miR-132-3p priming enhances the effects of mesenchymal stromal cell-derived exosomes on ameliorating brain ischemic injury

Journal

STEM CELL RESEARCH & THERAPY
Volume 11, Issue 1, Pages -

Publisher

BMC
DOI: 10.1186/s13287-020-01761-0

Keywords

Mesenchymal stromal cells; Exosome; miR-132-3p; Ischemia and reperfusion; Apoptosis; ROS production

Funding

  1. National Natural Science Foundation of China (NSFC) [81701175, 81770500, 81870580]
  2. Guangdong Basic and Applied Basic Research Foundation [2019A1515011574]
  3. Finance Fund for Science and Technology Special Competitive Allocation Project of Zhanjiang city [2016A01014]

Ask authors/readers for more resources

Backgrounds/aims Mesenchymal stromal cell-derived exosomes (MSC-EXs) could exert protective effects on recipient cells by transferring the contained microRNAs (miRs), and miR-132-3p is one of angiogenic miRs. However, whether the combination of MSC-EXs and miR-132-3p has better effects in ischemic cerebrovascular disease remains unknown. Methods Mouse MSCs transfected with scrambler control or miR-132-3p mimics were used to generate MSC-EXs and miR-132-3p-overexpressed MSC-EXs (MSC-EXs(miR-132-3p)). The effects of EXs on hypoxia/reoxygenation (H/R)-injured ECs in ROS generation, apoptosis, and barrier function were analyzed. The levels of RASA1, Ras, phosphorylations of PI3K, Akt and endothelial nitric oxide synthesis (eNOS), and tight junction proteins (Claudin-5 and ZO-1) were measured. Ras and PI3K inhibitors were used for pathway analysis. In transient middle cerebral artery occlusion (tMCAO) mouse model, the effects of MSC-EXs on the cerebral vascular ROS production and apoptosis, cerebral vascular density (cMVD), Evans blue extravasation, brain water content, neurological deficit score (NDS), and infarct volume were determined. Results MSC-EXs could deliver their carried miR-132-3p into target ECs, which functionally downregulated the target protein RASA1, while upregulated the expression of Ras and the downstream PI3K phosphorylation. Compared to MSC-EXs, MSC-EXs(miR-132-3p)were more effective in decreasing ROS production, apoptosis, and tight junction disruption in H/R-injured ECs. These effects were associated with increased levels of phosphorylated Akt and eNOS, which could be abolished by PI3K inhibitor (LY294002) or Ras inhibitor (NSC 23766). In the tMCAO mouse model, the infusion of MSC-EXs(miR-132-3p)was more effective than MSC-EXs in reducing cerebral vascular ROS production, BBB dysfunction, and brain injury. Conclusion Our results suggest that miR-132-3p promotes the beneficial effects of MSC-EXs on brain ischemic injury through protecting cerebral EC functions.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available