4.7 Article

Gene knockdown via electroporation of short hairpin RNAs in embryos of the marine hydroid Hydractinia symbiolongicarpus

Journal

SCIENTIFIC REPORTS
Volume 10, Issue 1, Pages -

Publisher

NATURE PORTFOLIO
DOI: 10.1038/s41598-020-69489-8

Keywords

-

Funding

  1. NSF program Enabling Discovery through Genomics tools-EDGE [1923259]
  2. Direct For Biological Sciences
  3. Division Of Integrative Organismal Systems [1923259] Funding Source: National Science Foundation

Ask authors/readers for more resources

Analyzing gene function in a broad range of research organisms is crucial for understanding the biological functions of genes and their evolution. Recent studies have shown that short hairpin RNAs (shRNAs) can induce gene-specific knockdowns in two cnidarian species. We have developed a detailed, straightforward, and scalable method to deliver shRNAs into fertilized eggs of the hydrozoan cnidarian Hydractinia symbiolongicarpus via electroporation, yielding effective gene-targeted knockdowns that can last throughout embryogenesis. Our electroporation protocol allows for the transfection of shRNAs into hundreds of fertilized H. symbiolongicarpus eggs simultaneously with minimal embryo death and no long-term harmful consequences on the developing animals. We show RT-qPCR and detailed phenotypic evidence of our method successfully inducing effective knockdowns of an exogenous gene (eGFP) and an endogenous gene (Nanos2), as well as knockdown confirmation by RT-qPCR of two other endogenous genes. We also provide visual confirmation of successful shRNA transfection inside embryos through electroporation. Our detailed protocol for electroporation of shRNAs in H. symbiolongicarpus embryos constitutes an important experimental resource for the hydrozoan community while also serving as a successful model for the development of similar methods for interrogating gene function in other marine invertebrates.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available