4.7 Article

Vanishing fine structure splitting in highly asymmetric InAs/InP quantum dots without wetting layer

Journal

SCIENTIFIC REPORTS
Volume 10, Issue 1, Pages -

Publisher

NATURE PUBLISHING GROUP
DOI: 10.1038/s41598-020-70156-1

Keywords

-

Funding

  1. Polish National Science Centre [2018/31/B/ST3/01415]

Ask authors/readers for more resources

Contrary to simplified theoretical models, atomistic calculations presented here reveal that sufficiently large in-plane shape elongation of quantum dots can not only decrease, but even reverse the splitting of the two lowest optically active excitonic states. Such a surprising cancellation of bright-exciton splitting occurs for shape-anisotropic nanostructures with realistic elongation ratios, yet without a wetting layer, which plays here a vital role. However, this non-trivial effect due to shape-elongation is strongly diminished by alloy randomness resulting from intermixing of InAs quantum-dot material with the surrounding InP matrix. Alloying randomizes, and to some degree flattens the shape dependence of fine-structure splitting giving a practical justification for the application of simplified theories. Finally, we find that the dark-exciton spectra are rather weakly affected by alloying and are dominated by the effects of lateral elongation.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available