4.5 Article

Postnatal Development of the Mouse Larynx: Negative Allometry, Age-Dependent Shape Changes, Morphological Integration, and a Size-Dependent Spectral Feature

Journal

JOURNAL OF SPEECH LANGUAGE AND HEARING RESEARCH
Volume 63, Issue 8, Pages 2680-2694

Publisher

AMER SPEECH-LANGUAGE-HEARING ASSOC
DOI: 10.1044/2020_JSLHR-20-00070

Keywords

-

Funding

  1. National Science Foundation [IOS 1754332]

Ask authors/readers for more resources

Purpose: The larynx plays a role in swallowing, respiration, and voice production. All three functions change during ontogeny. We investigated ontogenetic shape changes using a mouse model to inform our understanding of how laryngeal form and function are integrated. We understand the characterization of developmental changes to larynx anatomy as a critical step toward using rodent models to study human vocal communication disorders. Method: Contrast-enhanced micro-computed tomography image stacks were used to generate three-dimensional reconstructions of the CD-1 mouse (Mus musculus) laryngeal cartilaginous framework. Then, we quantified size and shape in four age groups: pups, weanlings, young, and old adults using a combination of landmark and linear morphometrics. We analyzed postnatal patterns of growth and shape in the laryngeal skeleton, as well as morphological integration among four laryngeal cartilages using geometric morphometric methods. Acoustic analysis of vocal patterns was employed to investigate morphological and functional integration. Results: Four cartilages scaled with negative allometry on body mass. Additionally, thyroid, arytenoid, and epiglottis cartilages, but not the cricoid cartilage, showed shape change associated with developmental age. A test for modularity between the four cartilages suggests greater independence of thyroid cartilage shape, hinting at the importance of embryological origin during postnatal development. Finally, mean fundamental frequency, but not fundamental frequency range, varied predictably with size. Conclusion: In a mouse model, the four main laryngeal cartilages do not develop uniformly throughout the first 12 months of life. High-dimensional shape analysis effectively quantified variation in shape across development and in relation to size, as well as clarifying patterns of covariation in shape among cartilages and possibly the ventral pouch.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available