4.8 Article

Lead Halide Perovskite Nanocrystals: Room Temperature Syntheses toward Commercial Viability

Journal

ADVANCED ENERGY MATERIALS
Volume 10, Issue 34, Pages -

Publisher

WILEY-V C H VERLAG GMBH
DOI: 10.1002/aenm.202001349

Keywords

green solvents; LEDs; ligands; nanocrystals; perovskites

Funding

  1. Tizard studentship from the Faculty of Engineering and Physical Sciences at University of Southampton
  2. National Research Foundation, Prime Minister's Office, Singapore [NRF-CRP14-2014-03]

Ask authors/readers for more resources

In this progress report, recent improvements to the room temperaturesyntheses of lead halide perovskite nanocrystals (APbX(3), X=Cl, Br, I) are assessed, focusing on various aspects which influence the commercial viability of the technology. Perovskite nanocrystals can be prepared easily from low-cost precursors under ambient conditions, yet they have displayed near-unity photoluminescence quantum yield with narrow, highly tunable emission peaks. In addition to their impressive ambipolar charge carrier mobilities, these properties make lead halide perovskite nanocrystals very attractive for light-emitting diode (LED) applications. However, there are still many practical hurdles preventing commercialization. Recent developments in room temperature synthesis and purification protocols are reviewed, closely evaluating the suitability of particular techniques for industry. This is followed by an assessment of the wide range of ligands deployed on perovskite nanocrystal surfaces, analyzing their impact on colloidal stability, as well as LED efficiency. Based on these observations, a perspective on important future research directions that can expedite the industrial adoption of perovskite nanocrystals is provided.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available