4.8 Review

Fluorophosphates: Next Generation Cathode Materials for Rechargeable Batteries

Journal

ADVANCED ENERGY MATERIALS
Volume 10, Issue 43, Pages -

Publisher

WILEY-V C H VERLAG GMBH
DOI: 10.1002/aenm.202001449

Keywords

batteries; cathodes; electrocatalysis; fluorophophate cathodes; fluorophosphates; polyanions

Funding

  1. Ministry of Human Resource Development (Govt. of India)
  2. Electrochemical Society (ECS, USA)
  3. Technology Mission Division (Department of Science and Technology, Govt. of India) under the Materials for Energy Storage (MES-2018) program [DST/TMD/MES/2k18/207]
  4. King Abdullah University of Science and Technology (KAUST)

Ask authors/readers for more resources

Cost, safety, and cycle life have emerged as prime concerns to build robust batteries to cater to the global energy demand. These concerns are impacted by all battery components, but the realizable energy density of lithium-ion batteries (LIBs) is limited by the performance of cathodes. Thus, cathode materials have a significant role to play in advancing the performance and economics of secondary batteries. To realize next generation Li-ion and post Li-ion batteries, a variety of cathode insertion materials have been explored, but finding a cost effective and stable cathode material that can deliver high energy density has been a daunting task. Oxide cathode materials are ubiquitous in commercial applications, as they can deliver high capacity. In comparison, polyanionic insertion materials can offer tuneable (high) redox potential, operational safety, and structural as well as thermal stability. Indeed, a wide range of polyanionic materials like phosphates, borates, sulfates, and their complexes have been reported. In this article, the alkali metal fluorophosphates class of polyanionic cathodes for secondary batteries is discussed. The various reported fluorophosphate insertion materials are discussed in terms of their electrochemical and electrocatalytic properties. The historical overview, recent progress, and remaining challenges for polyanionic fluorophosphates are presented along with suggested future research directions and potential application.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available