4.8 Review

Interface Engineering for Lithium Metal Anodes in Liquid Electrolyte

Journal

ADVANCED ENERGY MATERIALS
Volume 10, Issue 34, Pages -

Publisher

WILEY-V C H VERLAG GMBH
DOI: 10.1002/aenm.202001257

Keywords

dendrite-free; interface design; lithium metal batteries; solid electrolyte interphase

Funding

  1. National Natural Science Foundation of China [51872012]
  2. National Key RAMP
  3. D Program of China [2018YFA0306900]
  4. Fundamental Research Funds for the Central Universities
  5. 111 Project [B17002]

Ask authors/readers for more resources

Interfacial chemistry between lithium metal anodes and electrolytes plays a vital role in regulating the Li plating/stripping behavior and improving the cycling performance of Li metal batteries. Constructing a stable solid electrolyte interphase (SEI) on Li metal anodes is now understood to be a requirement for progress in achieving feasible Li-metal batteries. Recently, the application of novel analytical tools has led to a clearer understanding of composition and the fine structure of the SEI. This further promoted the development of interface engineering for stable Li metal anodes. In this review, the SEI formation mechanism, conceptual models, and the nature of the SEI are briefly summarized. Recent progress in probing the atomic structure of the SEI and elucidating the fundamental effect of interfacial stability on battery performance are emphasized. Multiple factors including current density, mechanical strength, operating temperature, and structure/composition homogeneity that affect the interfacial properties are comprehensively discussed. Moreover, strategies for designing stable Li-metal/electrolyte interfaces are also reviewed. Finally, new insights and future directions associated with Li-metal anode interfaces are proposed to inspire more revolutionary solutions toward commercialization of Li metal batteries.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available