4.8 Article

Genomic and enzymatic evidence of acetogenesis by anaerobic methanotrophic archaea

Journal

NATURE COMMUNICATIONS
Volume 11, Issue 1, Pages -

Publisher

NATURE RESEARCH
DOI: 10.1038/s41467-020-17860-8

Keywords

-

Funding

  1. National Key Research and Development Program of China [2018YFC0309800]
  2. National Natural Science Foundation of China [41476123, 91951117, 41921006, 41676177, 41902313, 91751205]

Ask authors/readers for more resources

Anaerobic oxidation of methane (AOM) mediated by anaerobic methanotrophic archaea (ANME) is the primary process that provides energy to cold seep ecosystems by converting methane into inorganic carbon. Notably, cold seep ecosystems are dominated by highly divergent heterotrophic microorganisms. The role of the AOM process in supporting heterotrophic population remains unknown. We investigate the acetogenic capacity of ANME-2a in a simulated cold seep ecosystem using high-pressure biotechnology, where both AOM activity and acetate production are detected. The production of acetate from methane is confirmed by isotope-labeling experiments. A complete archaeal acetogenesis pathway is identified in the ANME-2a genome, and apparent acetogenic activity of the key enzymes ADP-forming acetate-CoA ligase and acetyl-CoA synthetase is demonstrated. Here, we propose a modified model of carbon cycling in cold seeps: during AOM process, methane can be converted into organic carbon, such as acetate, which further fuels the heterotrophic community in the ecosystem. Ocean cold seeps are poorly understood relative to related systems like hydrothermal vents. Here the authors use high pressure bioreactors and microbial communities from a cold seep mud volcano and find a previously missing step of methane conversion to acetate that likely fuels heterotrophic communities.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available